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Simple Summary: The growing body of evidence for a Developmental Origin of Health and Diseases
(DOHaD) emphasizes the need to assess the role of fetal and neonatal factors in canine overweight
which affects nearly 40% of adult dogs. The purpose of the current study was to examine the
association between birth weight and subcutaneous fat thickness (SFT) at adulthood, measured by
ultrasonography, in a population of purebred Labrador dogs. We used a linear mixed-effects model
by adjusting for sex, age, neuter status and the anatomical sites of SFT measurements (abdomen,
flanks and lumbar region). The results suggest that, as in other species, dogs with the lowest birth
weights have a greater thickness of subcutaneous fat at adulthood than the others. These findings
highlight the importance of fetal life in adult health in the canine species. They suggest that birth
weight is an important health indicator of long-term impact. It should be considered in particular in
overweight management plans: puppies born with low birth weight should be identified as being
at higher risk of overweight and their owners should be encouraged to enter their dogs in specific
weight control plans from an early stage in life.

Abstract: Overweight affects nearly 40% of dogs. The objective of this study was to explore the
hypothesis of the Developmental Origins of Health and Disease through the association between
birth weight and adiposity in adult dogs. The association between body condition score (BCS) and
subcutaneous fat thickness (SFT), measured in the flanks, abdomen and lumbar regions, was assessed
in a population 88 adult Labradors (>1 year). Significant positive moderate correlations between
BCS and SFT were described. A linear mixed-effects model was used to investigate the association
between birth weight and SFT by adjusting for sex, age, neuter status and the anatomical site of the
measurement. The results showed that SFT values increased with age and were higher in sterilized
than in entire dogs. In addition, SFT values were higher in the lumbar region compared to the other
anatomical sites. Finally, the model revealed a significant association between SFT and birth weight,
suggesting that, as in other species, dogs with the lowest birth weights have thicker subcutaneous fat
at adulthood than the others. The assessment of visceral adipose tissue and the relative importance
of birth weight among the numerous risk factors of overweight remains to be explored in dogs.

Keywords: dog; body condition score; ultrasound; subcutaneous fat thickness; birth weight; Labrador

1. Introduction

In the canine species, overweight affects nearly 40% of dogs [1–5] and is becoming a
major population health issue [6]. Much more than a simple aesthetic slight, overweight
and, a fortiori, obesity, predispose animals to numerous pathologies (osteoarthritis, car-
diopathies, diabetes, constipation, dermatitis, anesthetic risk, etc.) [7,8], which contribute
towards reducing their life expectancy [9,10], particularly their healthy life expectancy and,
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more globally, their comfort of life [11,12]. As excess adiposity is known to be difficult to
reverse, it appears critical to prevent it as early as possible in life.

Since the 1980s and the development the “Barker hypothesis”, suggesting an impact
of early life events on the risk of diseases in adulthood, a growing body of epidemiological
and experimental data have supported the Developmental Origins of Health and Disease
(DOHaD) in humans [13–16]. Events undergone during early life including embryonic
and fetal phases have long-term consequences until adulthood and elderly ages. An
indicator of a suboptimal in utero environment, low birth weight was demonstrated to
be associated with excess adiposity at adulthood in many mammalian species such as
humans [17–19], pigs [20], mice [21] and guinea pigs [22]. In the canine species, maternal
programming is just beginning to be explored. A previous work, on a Labrador dog cohort,
demonstrated an association between low birth weight and increased risk of overweight at
adulthood, assessed through the body condition score (BCS) [23]. This score, established by
palpation and visual observation on a 9-point scale, is widely used for body composition
assessment both in clinical practice and for research because it is inexpensive, non-invasive
and provides immediate results [24–26]. Although its correlation with dual-energy X-ray
absorptiometry and deuterium oxide dilution is well established [25,27], studies have
shown its subjectivity [28,29] with the influence of scorer experience [30,31]. In order to
give a more precise estimation of canine body composition and more particularly adiposity,
more reliable and objective descriptors have been developed such as the measurement of
subcutaneous fat thickness (SFT). SFT, measured by ultrasonography at several anatomical
sites is correlated with the proportion of body adipose tissue in canine species [32].

The objective of this study was to explore further the association between birth weight
and adiposity at adulthood, assessed through the SFT, in a Labrador dog population.

2. Materials and Methods
2.1. Study Population
2.1.1. Dog Population

The study population was 88 adult (>1 year), purebred Labradors, born in one breeding
kennel (Centre d’Etude de Sélection et d’Elevage pour Chiens Guides d’Aveugles et Autres
Handicapés, CESECAH; Lezoux, France). At the time of examination, they were either
active, retired or breeding assistance dogs and they are housed in volunteer families.
Age, sex and neuter status were recorded and weights at birth were extracted from the
kennel database.

2.1.2. Assessment of Adiposity

For each dog, adiposity was estimated through two different methods. First, the body
condition score (BCS) was assessed jointly by two operators, through palpation and visual
observation, using the 9-point scale developed by Laflamme [25], i.e., from 1 (emaciated) to
9 (grossly obese). Any disagreement between the two operators was resolved by consensus.
Subcutaneous fat thickness (SFT) was measured by real-time ultrasonography (MyLab
One, ESAOTE, Hospimedi, Pouilly, France and variable frequency microconvex probe
6–13 MHz) at three locations (abdomen, flanks and lumbar region; Figure 1) using the
method previously described by Payan-Carreira et al. [32]. For evaluation on the abdomen,
the probe was placed in vertical position on the left lateral wall of the abdomen, midway
between the linea alba and the tip of the transverse process of the lumbar vertebra. For
evaluation on flanks, the probe was placed transversely to the rib on the external oblique
abdominal muscle on the left side of the dog, over the 9th intercostal space and just above
the costochondral junction. For evaluation at the lumbar region, the probe was positioned
between the 3rd and 5th lumbar vertebrae, parallel to the spinous process, 2 to 3 cm to the
left of the midline. Dogs were in standing position, no anesthesia, sedation or clipping was
required and ethanol served as a coupling medium. For each location, three measurements
were taken and the average was then used for the analysis.
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Figure 1. Schematic representation of the three anatomical sites used in the study to evaluate sub-
cutaneous fat thickness in Labradors using real-time ultrasonography (n = 88, [32]). 

2.2. Statistical Analysis 
The information collected was transferred into an Excel spreadsheet (Microsoft Cor-

poration, Redmond, Washington, DC, USA). Then, statistical analysis and graphical rep-
resentations were performed using R software, version 4.2.1 [33] and the following pack-
ages: corrplot [34], emmeans [35], FSA [36], ggplot2 [37], lme4 [38], performance [39] and 
rcompanion [40]. Statistical significance was defined as p value < 0.05 and statistical un-
certainty was assessed by calculating the 95% confidence intervals (95% CI).  

After a description of the population studied, the relationship between BCS and SFT 
for each point of measurement was tested with the Kruskal–Wallis rank sum test followed 
by a Dunn test with Benjamini–Hochberg correction. 

Then, the interplay between birth weight and SFT values was investigated by fitting 
a linear mixed regression model with SFT as response variable. Explanatory variables in-
cluded birth weight (categorized at LTM, Lower Than the Median/HTM, Higher Than or 
equal to the Median), the animal’s sex (male/female), age (young, less than 2 years in-
cluded/adult, 2–5 years/old, more than 5 years included), neuter status (neutered/entire) 
and location (abdomen/flanks/lumbar region). Dog identification was introduced as a ran-
dom term to deal with the repetition of the individuals (three locations per dog). Starting 
with the full model (SFT ~ Location + Birth weight + Neuter status + Sex + Age), a backward 
selection based on Akaike’s Information Criterion (AIC) was applied to select the most 
parsimonious model. At the end of the backward selection, interactions between birth 
weight and location as well as between birth weight and age were tested by running mod-
els with and without the interaction term. The normal probability plot of residuals and 
the plot of residuals versus predicted values were generated to check whether the assump-
tions of normality and homogeneity of variance had been fulfilled. The estimated mar-
ginal means of SFT were obtained from this model and pairwise comparisons were per-
formed using Tukey’s Honest Significant Difference method.  

3. Results 
3.1. Population 

Among the 88 adult Labradors included in the present study, ages ranged from 1.1 
to 9.6 years (median: 3.4 years) with 28 young dogs (≤2 years), 29 adults (2–5 years) and 
31 old dogs (≥5 years). Sex distribution was 6 (6.8%) entire males, 34 (38.6%) entire females, 
17 (19.3%) neutered males and 31 (35.2%) spayed females. BCS varied between 4 and 9 (n 

Figure 1. Schematic representation of the three anatomical sites used in the study to evaluate
subcutaneous fat thickness in Labradors using real-time ultrasonography (n = 88, [32]).

2.2. Statistical Analysis

The information collected was transferred into an Excel spreadsheet (Microsoft Corpo-
ration, Redmond, Washington, DC, USA). Then, statistical analysis and graphical represen-
tations were performed using R software, version 4.2.1 [33] and the following packages:
corrplot [34], emmeans [35], FSA [36], ggplot2 [37], lme4 [38], performance [39] and rcom-
panion [40]. Statistical significance was defined as p value < 0.05 and statistical uncertainty
was assessed by calculating the 95% confidence intervals (95% CI).

After a description of the population studied (Table S1), the relationship between BCS
and SFT for each point of measurement was tested with the Kruskal–Wallis rank sum test
followed by a Dunn test with Benjamini–Hochberg correction.

Then, the interplay between birth weight and SFT values was investigated by fitting
a linear mixed regression model with SFT as response variable. Explanatory variables
included birth weight (categorized at LTM, Lower Than the Median/HTM, Higher Than
or equal to the Median), the animal’s sex (male/female), age (young, less than 2 years
included/adult, 2–5 years/old, more than 5 years included), neuter status (neutered/entire)
and location (abdomen/flanks/lumbar region). Dog identification was introduced as a
random term to deal with the repetition of the individuals (three locations per dog). Starting
with the full model (SFT~Location + Birth weight + Neuter status + Sex + Age), a backward
selection based on Akaike’s Information Criterion (AIC) was applied to select the most
parsimonious model. At the end of the backward selection, interactions between birth
weight and location as well as between birth weight and age were tested by running models
with and without the interaction term. The normal probability plot of residuals and the plot
of residuals versus predicted values were generated to check whether the assumptions of
normality and homogeneity of variance had been fulfilled. The estimated marginal means
of SFT were obtained from this model and pairwise comparisons were performed using
Tukey’s Honest Significant Difference method.

3. Results
3.1. Population

Among the 88 adult Labradors included in the present study, ages ranged from 1.1
to 9.6 years (median: 3.4 years) with 28 young dogs (≤2 years), 29 adults (2–5 years) and
31 old dogs (≥5 years). Sex distribution was 6 (6.8%) entire males, 34 (38.6%) entire females,
17 (19.3%) neutered males and 31 (35.2%) spayed females. BCS varied between 4 and 9
(n = 9, n = 27, n = 25, n = 17, n = 8 and n = 2, for BCS levels 4, 5, 6, 7, 8 and 9, respectively;
Table 1) and the overall prevalence of overweight (BCS ≥ 6) was 59.1% (95% confidence
interval, 95% CI: 48.1–69.5). The median birth weight was 410 g (interquartile range, IQR:
380–470) with 43 dogs in the HTM group (birth weight ≥ 410 g) and 45 dogs in the LTM
group (birth weight < 410 g).
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Table 1. Description of adiposity parameters in study population (n = 88 Labradors).

Parameter Mean SD Minimum Maximum

BCS 5.9 1.2 4 9
SFT (all locations) 9.2 4.9 0.8 35.6

SFT Abdomen 7.8 3.7 0.9 24.1
SFT Flank 7.2 2.9 0.8 18.5

SFT Lumbar region 12.7 5.8 1.4 35.6
BCS: body condition score (1 = emaciated to 9 = grossly obese); SFT: subcutaneous fat thickness (in mm); SD:
standard deviation.

3.2. Association between SFT and BCS

SFT, assessed at three different locations (abdomen, flanks and lumbar region), varied
between 0.8 and 35.6 mm (median: 7.9 mm; Table 1). The correlation matrix built between
the three measurement sites and BCS described positive significant but moderate correla-
tions (Figure 2). The highest correlation was obtained between SFT from the flanks and
BCS (r = 0.69; p < 0.001). For each site, SFT significantly increased with BCS (p < 0.001 for
all, Kruskal–Wallis rank sum test; Figure 3).
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 Adult, 2–5 years −0.462 0.754  
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Neuter status Entire   0.038 
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Figure 3. Relationship between body condition score and subcutaneous fat thickness
(n = 88 Labradors). Note: SFT was measured at three anatomical sites (flank, abdomen and lumbar re-
gion). Within each box the different horizontal lines, from bottom to top, represent the 25th percentile,
median and 75th percentile values. The white diamonds denote the mean value in the considered
group. For each plot, groups sharing a letter were not significantly different (p > 0.05). Pairwise
comparisons were conducted using a Dunn test with Benjamini–Hochberg correction following
a Kruskal–Wallis rank sum test showing a significant relationship between BCS and SFT at the
anatomical site considered. The scales of the y-axes are different between the three graphs.
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3.3. Association between Birth Weight and SFT

The results of the final multivariable model of the association between SFT and birth
weight categories are summarized in Table 2. The fixed effects explained 40% of the
variation in the SFT observed in the study population and the full model (i.e., including
random term) explained 56% of this variation.

Table 2. Linear mixed regression model analysis for subcutaneous fat thickness (n = 88 Labradors).

Parameter Coeff. SE p

Intercept 6.954 0.785
Age Young, ≤2 years <0.001

Adult, 2–5 years −0.462 0.754
Old, ≥5 years 3.061 0.720

Neuter status Entire 0.038
Sterilized 1.251 0.603

Birth weight Lower than the median 0.014
Higher or equal to the median −1.500 0.613

Location Abdomen <0.001
Flank −0.611 0.491
Lumbar 4.821 0.491

Dog identity was included in the model as a random term. Coeff, coefficient; SE, standard error.

The estimated marginal mean of SFT was higher in old Labradors compared with
the two other groups (11.29 mm, 95CI: 10.28–12.30 vs. 7.77 mm, 95CI: 6.73–8.81 for adult
dogs and 8.23 mm, 95CI: 7.20–9.26 for young dogs). It was also higher for sterilized dogs
(9.72 mm, 95CI: 8.92–10.52) than for entire dogs (8.47 mm, 95CI: 7.61–9.34) and in the lumbar
region compared with the two other locations (12.52 mm, 95CI: 11.72–13.32 vs. 7.08 mm,
95CI: 6.28–7.88 for flanks and 7.69 mm, 95CI: 6.90–8.49 for abdomen). Finally, the estimated
marginal mean of SFT was higher for dogs with birth weights below the median compared
to those with higher birth weights (9.85 mm, 95CI: 9.02–10.7 vs. 8.35 mm, 95CI: 7.50–9.2).
Individuals with the lightest birth weights had thicker fat deposits whatever the site of
measurement (abdomen, flanks, lumbar region; Figure 4a) and at all periods of adulthood
(Figure 4b). None of the interactions tested (birth weight and location or birth weight and
age) were significant.
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Figure 4. Relationship between birth weight and subcutaneous fat thickness at adulthood
(n = 88 Labradors) (a) by anatomical site and (b) by age. Note: Blue bars indicate confidence
intervals for estimated marginal means of SFT. Overlapping between red arrows from two groups
indicates a non-significant difference between the two groups; HTM: higher than the median; LTM:
lower than the median.

4. Discussion

In contrast to the differences with mouse, rabbit and human, evidence of maternal
programming in the canine species is lacking [41]. This work provides the demonstration
of an association between birth weight (endpoint of embryofetal growth) and adiposity
at adulthood in dogs. Based on a quantitative assessment of adiposity, i.e., subcutaneous
fat thickness measured by ultrasonography, the present study strengthens results from a
previous study observing a link between birth weight and BCS [23]. The population studied
was chosen in one breed predisposed to overweight (the Labrador) with all dogs born
in the same kennel and raised under similar environmental conditions until two months
of age.

Although the measurement of SFT requires equipment (a real-time ultrasound ma-
chine) contrary to BCS, its use in livestock (pigs [42,43], small ruminants [44,45], horses [30]
and cows [28,46,47]) suggests the feasibility of its implementation in canine practice. Indeed,
SFT ultrasound measurement does not require sedation and is a quick, non-invasive and
easy to learn objective examination [28,32]. In our study, the SFTs measured ranged from
0.8 to 35.6 mm and were higher than the measurements obtained by Payan-Carreira et al.
(1 to 7.9 mm) [32] or by Wilkinson et al. (0.4 to 4.7 mm) [48] for the three locations, and
by Morooka et al. for the lumbar region (0.8 to 9.1 mm) [49]. This difference could be
explained by the absence of grossly obese dogs in the two studies cited previously (BCS
ranging from 1 to 4 on a 5-point scale in Payan-Carreira et al. and from 4 to 8 on a 9-point
scale in Morooka et al.) [32,49]. In addition, differences in body composition depending
on the breed have been suggested [46] and the Labrador is considered as predisposed to
become overweight compared to other canine breeds [47,48] which could lead to higher
adiposity and thus higher SFT values.

BCS is a semi-quantitative subjective parameter for body composition whereas SFT
is more quantitative and objective. Nevertheless, both criteria were correlated in the
present work, as in previous studies [32,48,49]. Among the three locations considered,
SFT measurements from the flanks were the most positively correlated with BCS (r = 0.69)
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but only slight SFT differences between the various BCS scores were observed (Figure 3).
This higher correlation between BCS and SFT at the flanks suggests that BCS attribution
is strongly influenced by the palpation/observation of fat deposits on this area. SFT at
the lumbar region was also well correlated with BCS (r = 0.62) with a gradual increase, as
shown in Figure 2, suggesting that this anatomical area may be useful to assess dog body
composition in dogs, such as back fat thickness in livestock species [43]. As in humans,
fat deposition varied depending on the anatomical region [50,51], subcutaneous fat being
thicker in the lumbar area compared to the flanks and abdomen. Among variation factors,
as reported elsewhere in dogs [52,53] and in other species (humans [54] and lambs [55]), the
adiposity of adult dogs increased with age and neuter status. Contrary to what has been
observed in humans [50,56,57], lambs [55] or pigs [58], no influence of sex on SFT values
was observed in our population of Labradors. Further studies, including breed effect, are
warranted to explore the parameters involved in the pattern of subcutaneous fat deposition
in the canine species.

The main objective of this paper was to assess whether birth weight belongs to the
variation factors of SFT at adulthood: adult dogs with the lightest weights at birth exhibited
higher values of SFT at all locations and at all ages. This finding is in agreement with the
literature indicating the maternal programming of adiposity at adulthood by low birth
weight [59–61]. Given the sample size and to be consistent with our previous study [23],
the effect of birth weight was explored by separating the dogs into two groups relative to
the median birth weight in the population. To further explore and refine this relationship
between birth weight and adult adiposity, it may be of interest to study the effect of more
extreme values of birth weight (e.g., first and fourth quartiles or first and tenth deciles).

As the interaction between birth weight and location was not significant, birth weight
can be considered as a determinant of later subcutaneous fat deposition but without any
impact on its distribution pattern. Our results are in contradiction with previous work
on humans indicating a more truncal distribution of subcutaneous fat in adults with low
birth weight [61]. This might be explained by major differences in body fat distribution,
as highlighted by Kempster [62]. Nevertheless, both BCS and SFT are used to assess only
peripheral fat deposition whereas recent findings in humans suggest the importance of the
distribution of adipose tissue, subcutaneous or visceral, regarding the risk of overweight
co-morbidities [63,64]. For example, visceral adiposity has been described to be a better
predictor than SFT of incident impaired glucose tolerance, one of the major co-morbidities
associated with obesity in humans [65,66]. In humans and lambs, low birth weight was
found associated with visceral adiposity [67–69]. Accurate methods of body composition
assessment such as dual-energy X-ray absorptiometry [70] would allow exploring the
impact of birth weight on body fat distribution, including visceral adiposity, at adulthood
in the canine species.

These findings highlight the importance of fetal life in adult health in the canine
species. They suggest that birth weight is an important health criterion of long-term impact.
It should be considered in particular in overweight management plans: puppies born
with low birth weight should be identified as having a higher risk of overweight and their
owners should be encouraged to involve the dog in a specific weight control plan early
in life. In addition, it would be wise to consider training pet owners who currently tend
to underestimate the adiposity of their animal [31,71]. This would allow them to detect
overweight as early as possible, without waiting for a visit to the veterinarian.

Maternal programming in the canine species is therefore a public health issue that
requires the involvement of all stakeholders: breeders are responsible for newborns and for
passing on the value of birth weight to owners; veterinarians need to pay attention to birth
weight as a significant health outcome even in adulthood; and owners need to be aware of
this risk factor for overweight and seriously follow a weight management plan. In addition
to birth weight, further studies are required to assess the influence of neonatal events and
namely early growth on overweight risk at adulthood.
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Many other factors suggested or demonstrated to have effects on adiposity in dogs
cannot be explored in the current study which aim was to demonstrate the impact of birth
weight. For example, inadequate diet or a lack of physical activity are known risk factors of
dog overweight [1,72]. In addition, recent studies have demonstrated a strong association
reported between a deletion present in the POMC gene of Labradors and increased body
weight [73] and obesity [74]. Thus, future studies on genotype, including more dogs, are
also warranted to evaluate at the same time numerous characteristics including genetics
or diet for example. Life-long follow-up of a cohort of dogs would help to conduct this
specific work.

5. Conclusions

To conclude, this work suggests that birth weight, interesting parameter to predict
neonatal life, is also an important health indicator of long-term impact associated with
adiposity at adulthood. Thus, it should be considered in overweight management plans:
puppies born with low birth weight should be identified as being at higher risk of over-
weight and their owners should be encouraged to enter their dogs in specific weight control
plans from an early stage in life. In the future, it may also be of interest to consider and
evaluate the effect of early growth that may accentuate or temper the effect of birth weight
on adult adiposity.
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